Ленточный фундамент на естественном основании. Основания и фундаменты

Фундаментами мелкого заложения на естественных основаниях называют такие фундаменты, которые сооружают в открытых котлованах глубиной на более 5-6м.Основные требования к фундаментам – их достаточная прочность, долговечность, морозостойкость, стойкость против агрессивного воздействия подземных вод.

Фундамент должен иметь такие размеры, чтобы среднее давление по подошве фундамента на превышало расчетного сопротивления грунта основания.

Кроме того, расчетные значения абсолютных осадок и разностей осадок между отдельными фундаментами одного сооружения не должны превышать установленных нормами проектирования предельных значений.

Классификация фундаментов мелкого заложения

К отдельным фундаментам стаканного типа относятся фундаменты под колонны. Обычно такие фундаменты применяются в промышленных зданиях. При не слишком больших нагрузках на грунт, при достаточно прочных и малосжимаемых грунтах, а так же при гибкой схеме работы надземной части здания, когда колонны и ригели или колонны и фермы соединены шарнирно.

Различают способом крепления фундамента с колонной:

а) замоноличивание (?мелкие, холодные?)

1 - Бетон на мелком заполнителе не ниже класса бетона самого фундамента (не ниже В20).

2 - стакан

б) большие колонны устанавливаются без стакана

жесткий стык – сварка и стык замоноличиваются бетоном

Обычно отдельные фундаменты под колонну выполняются с сочетанием с рандбалками (или фундаментными балками).

Столбчатые бесстаканные фундаменты под кирпичную стену

Применяются для одноэтажных зданий при хороших грунтовых условиях для частного индивидуального строительства.

Ленточные фундаменты

Под кирпичные стены иногда назначаютнепрерывными.

Применяются при равномерной нагрузке от стен на грунт и постоянных вдоль стены в грунтовых условиях. (l/b≥10).

Изменение размеров глубины заложения возможны только на отдельных участках ограниченной длины. Участки имеющие разные размеры отделяются осадочными швами. Применяются при значительных нагрузках и достаточно слабых грунтах. Несущественно изменяют жесткость сооружения, почти не работают на изгиб в продольном направлении (при большой жесткости стен).

Параллельные ленточные фундаменты под колонны применяются при шаге колонн не более 6 м и при наличии слабых грунтов. Такие фундаменты уменьшают неравномерность осадок отдельных колонн.

Лекция 7 – 10.05.12

Фундаменты перекрестных лент под колонны

Применяются при малом шаге колонн, при больших нагрузках и слабом грунте. Перекрестные ленты позволяют выравнивать осадки не только отдельных колонн в ряду, но и здания в целом.

Сплошные фундаменты

Фундаменты в виде сплошной плиты как под колонны, так и под кирпичные стены, устраивают под всем сооружением или под его частью в виде ж/б плит под сетку колонн и стен. Такие фундаменты работают на изгиб в двух взаимно перпендикулярных направлениях, имеют небольшую равномерную осадку, им не страшно подмачивание поверхностными водами, а так же они защищают подвальные части здания. Размеры таких фундаментов обусловлены размерами сооружения в плане.

ОСНОВАНИЯ И ФУНДАМЕНТЫ

и гражданское строительство

Санкт-Петербург


Основания и фундаменты:

Основания и фундаменты

Редактор А. В. Афанасьева


Общие положения

«Основания и фундаменты» геотехнических наук, включающих инженерную геологию и механику грунтов.

«Основания и фундаменты».

Введение

И фундаментов

Свайные фундаменты

Искусственно улучшенные основания

Проектирование и устройство грунтовых и песчаных подушек. Поверхностное уплотнение грунтов. Глубинное уплотнение песков динамическими воздействиями, песчаными сваями и др. Уплотнение грунтов статической нагрузкой, водопонижением. Область применения методов. Закрепление грунтов (цементация, силикатизация, электрохимическое закрепление, смолизация, термический метод, армирование грунта, метод гидроразрыва, метод струйной технологии).

Крепление стен и осушение котлованов при устройстве фундаментов

Назначение и способы креплений. Распорные крепления. Шпун-товые стенки. Искусственное замораживание грунтов. «Стена в грунте». Область применения способов.

Водоотлив. Открытый водоотлив в различных грунтовых условиях. Искусственное понижение уровня грунтовых вод и область его применения (иглофильтры, глубинные насосы, противофильтрационные завесы).

Методические указания по изучению

Теоретического курса

Приступая к изучению теоретического материала, следует прежде всего ознакомиться с программой дисциплины.

Теоретический материал представлен в основной литературе, и в зависимости от имеющегося учебника и с учетом программы следует выбрать материал, подлежащий изучению.

В результате изучения дисциплины «Основания и фундаменты» студент должен знать :

состав и объем инженерно-геологических исследований для промышленного и гражданского строительства;

принципы проектирования фундаментов;

расчеты и конструкции фундаментов мелкого заложения;

расчеты и конструкции свайных фундаментов;

методы искусственного улучшения свойств грунтов;

способы устройства котлованов и фундаментов глубокого заложения;

методы водопонижения в грунтах;

особенности проектирования фундаментов на структурно-неус-тойчивых грунтах и в особых условиях;

устройство фундаментов при реконструкции предприятий и зданий, методы усиления оснований и фундаментов;

уметь :

оценить инженерно-геологические условия строительной площадки; правильно выбрать способ производства работ, обеспечивающий сохранность естественной структуры грунтов основания;

проектировать основания и фундаменты зданий и сооружений по предельным состояниям на основе вариантности решений;

рассчитывать устойчивость откосов и определять давление грунта на подпорные стенки;

понимать :

задачи курса и перспективы развития разделов данной науки;

особенности расчета фундаментов различных типов;

методы устройства подземных сооружений, в том числе объектов гражданской обороны;

особенности работы оснований и фундаментов глубокого заложения;

вопросы проектирования и конструирования фундаментов при динамических воздействиях.

Изучение дисциплины «Основания и фундаменты» базируется на следующих ранее изучавшихся курсах: инженерная геология, сопротивление материалов с основами теории упругости и пластичности, гидравлика, строительная механика, строительные конструкции, технология строительного производства, охрана труда, экономика строительства.

Задание на курсовое проектирование

Выбор задания производится в соответствии с двумя последними цифрами студента.

Схема сооружения . Вариант схемы сооружения (рис. 1-10) при-нимается по предпоследней цифре шифра: нечетные вариант размеров и нагрузок - для студентов, у которых последняя цифра шифра нечетная, четный - если последняя цифра шифра четная или ноль. Усилия по верхнему обрезу каждого рассчитываемого фундамента, обозначенного номером на плане сооружения, приведены в табл. 1 приложения.

Геологические условия . Номер геологических условий прини-мается по последней цифре шифра по рис. 11-15. При этом номер пласта без скобок принимается для шифра, оканчивающегося цифрами от 0 до 4, в скобках - для шифров, оканчивающихся цифрами от 5 до 9. Расчетные показатели физико-механических свойств грунтов указаны в табл. 2 приложения.






Пример. Шифр студента ПГС - 02-138. Номер схемы сооружения - 3 (ремонтный цех). Размеры и нагрузки - по четному варианту. Вариант геологических условий - 8. Из геологических разрезов принимаем номера грунтов в скобках, т. е. по табл. 2: песок пылеватый -16, глина - 3 и суглинок - 5.

Состав и объем проекта

Проект должен содержать:

1) оценку инженерно-геологических условий и свойств грунтов, включая определение расчетного сопротивления грунта основания;

2) разработку вариантов (не менее 3) для наиболее нагруженного и характерного фундамента. По каждому варианту необходимо:

а) выбрать и обосновать глубину заложения фундамента, тип фундамента, тип основания;

в) сделать дополнительные расчеты основания, если они требуются (например, расчет песчаной подушки, глубинного уплотнения и т. д.);

д) определить стоимость каждого варианта, сравнить рассмотренные варианты по технико-экономическим показателям и выбрать основной вариант.

Размеры фундаментов в стадии разработки вариантов следует определять по максимальным вертикальным нагрузкам, считая их центрально приложенными;

3) расчет и конструирование всех намеченных на плане здания фундаментов, а при необходимости и искусственных оснований по принятому (основному) варианту с учетом их внецентренного загружения;

4) расчет осадок двух близко расположенных фундаментов для принятого варианта:

а) абсолютных осадок;

б) относительной осадки;

в) сравнение полученных расчетом осадок с предельными, приведенными в СНиП, и решение вопроса о необходимости устройства осадочных швов;

18
защиту подвальных помещений от подземных вод, разработку конструкции гидроизоляции (при наличии подвала и высоком уровне грунтовых вод). В случае устройства внутренней гидроизоляции следует учесть влияние неравномерных осадок на гидроизоляцию и предусмотреть необходимые мероприятия по ее сохранению;

Все необходимые обоснования решений и расчеты должны при-водиться в пояснительной записке в соответствии с заданием, в ука-занной последовательности, с обязательным изображением эскизов, расчетных схем с указанием размеров и привязок.

Чертеж выполняется в карандаше, туши или с использованием программы «Autocad» на листе формата А1 или нескольких листах формата A3. На чертеже приводятся:

а) схематический поперечный разрез сооружения с прорисовкой фундаментов и основания (масштаб 1:200);

б) конструкции рассмотренных вариантов фундамента, совмещенные с геологическим разрезом (масштаб 1:100);

в) план фундаментов всего здания (или план ростверков, если в качестве основного варианта выбран свайный) с размерами и привязкой к осям (масштаб 1:100); свайное поле (масштаб 1:200);

г) сечения фундаментов с отметками, размерами и привязкой к осям (масштаб 1:50);

д) детали устройства осадочных швов, гидроизоляции, фундаментных балок и др.;

е) вариант свайного фундамента (или фундамента на естественном основании, если в качестве основного варианта принят свайный) – план и сечение (масштаб 1:50).

Пояснения о принятых материалах и их марках, о подготовке под фундамент, особенностях производства работ и прочем приводятся на листе ватмана в виде перечня технических требований.


Приложения

Приложение 1

Усилия на обрезе фундамента от расчетных нагрузок в наиболее невыгодных сочетаниях

№ схемы. Сооружение Вариант Номер фунда- мента 1-е сочетание 2-е сочетание
N 0II , кН M 0II , кН. м T 0II , кН N 0II , кН M 0II , кН. м T 0II , кН
2
Схема 1. Химический корпус Четный. l = 6м -24 - -29 -
- -52 -
-45 - -
-122 - -146 -
5* -184 -220 -
Нечетный. l = 9м. Подвал в осях А-Б I -21 - -26 -
- -69 -
-58 - -
4* -84 - -120 -
-260 - -314 -
Схема 2. Фабричной корпус Четный. l = 9м -140 -20 -178
±90 ±144
- -
Нечетный. l =12м. Подвал в осях А-Б -170 -40 -200 -60
±150 ±32 ±204 -30
- -
Схема 3. Ремонтный цех Четный - -52 -
- - - -
±84 ±100 -
-220 -10 -14
5* -200 -12 -240 -17
Нечетный. Подвал в осях А-Б -52 - -64 -
2* - - - -
±120 - ±140 -
-300 -20 -340 -26
-18 -260 -14
Схема 4. Котельная Четный. l 1 = 4 м; l 2 = 6 м -290 -12 - -
2* - -
- - - -
4* - - - -
-180 - -220 -10

32
Продолжение прил. 1

Схема 4. Котельная Нечетный. l 1 = 3 м; l 2 = 5 м -260 -12 -300 -36
-
3* - - - -
- - - -
5* -140 - -158 -29
Схема 5. Эксперимен- тальный цех Четный. l = 12 м 1* 3* - -50 - - - -10 - - - -62 - - - -12 - - д
Нечетный. l =18м. Подвал в осях 4-6 - - - -
- - - -
-10 -12
5* _ - - -
6* - - - -
Схема 6. Жилой дом Четный. 7 этажей - - - -
- - - -
- - - -
4* - - - -
- - - -
6* - - - -
Нечетный. 10 этажей - - - -
- - - -
- - - -
- - - -
5* - - - -
6* - - - -
Схема 7. Механический цех Четный. l 1 = 24 м; l 2 = 12 м -320 -21
-260 -19
±100 ±12 ±130 ±12
- -
Нечетный. l 1 = 18 м; l 2 = 9 м Канал у оси А -260 -10
до >-200 -8
- - - -
-180 - -

Окончание прил. 1

Схема 8. Сварочный цех Четный. l = 21 м -240 -30
-26
- - - -
-30 - -
5* -52 -6
Нечетный. l =18 м 1* -190 -20
- -100 -20
- - - -
- -
-60 -6
Схема 9. Силосный корпус Четный. l 1 = 12 м l 2 = 6 м - - - - - - - - ±320 - - - ±150 - - -
Нечетный. l 1 = 10 м l 2 = 5 м - - - - - - - - ±270 - - - ±130 - - -
Схема 10. Монтажный цех Четный. l = 15 м -520 -30 - - - - -38 - - -62
2* - -
-150
- -
160 910 180 810 -400
Нечетный. l =12м -400 -20
- - - -
-420 -30
4* - - - -
- - - -
6* - -300 -50

Примечания: 1. В таблице заданы расчетные усилия для расчета по деформациям. Расчетные усилия для расчета по несущей способности и прочности определяются путем умножения заданных усилий на осредненный коэффициент перегрузки п = 1,2. Усилия на ленточные фундаменты даны на 1 м их длины.

2. Знаки усилий: положительное направление поперечной силы - слева направо, момента - по часовой стрелке, при этом положение фундамента - по разрезу на схеме здания.

3. Для фундаментов, у которых номера со звездочками, достаточно определить только размеры в плане, найдя площадь подошвы по формуле

F = N / (R – γ ср h).

4. Величина R принимается уже вычисленной для наименее загруженного фунда­мента с номером без звездочки.


Приложение 3

ОСНОВАНИЯ И ФУНДАМЕНТЫ

Методические указания по изучению дисциплины

и выполнению курсового проекта для студентов

специальности 290300 - промышленное

и гражданское строительство

Санкт-Петербург


Основания и фундаменты: Методические указания по изучению дисциплины и выполнению курсового проекта для студентов специальности 290300 - промышленное и гражданское строительство / СПб. гос. арх.-строит. ун-т; Сост.: В. Д. Карлов, Р. А. Мангушев. СПб., 2003. 40 с.

Приводятся содержание дисциплины «Основания и фундаменты», список литературы по изучению дисциплины, выбор задания на разработку курсового проекта, порядок и последовательность работы над проектом.

Табл. 3. Ил. 15. Библ.: 13 назв.

Рецензент д-р техн. наук, проф, И. И. Сахаров

Основания и фундаменты

Составители: Карлов Владислав Дмитриевич, Мангушев Рашид Александрович

Редактор А. В. Афанасьева

Компьютерная верстка А. М. Николаевой

Подписано к печати 15.09.2003. Формат 60x84 7 16 . Бумага офсетная. Усл. печ. л. 2,5. Уч.-изд. л. 2,75. Тираж 500 экз. Заказ 205. «С» 51.

Санкт-Петербургский государственный архитектурно-строительный университет 190005, Санкт-Петербург, ул. 2-я Красноармейская, д. 4.

Отпечатано на ризографе. 190005, Санкт-Петербург, ул. 2-я Красноармейская, д. 5.


Общие положения

В соответствии со стандартом специальности, учебными планами и типовыми программами дисциплина «Основания и фундаменты» изучается на VIII и IX семестрах и предваряется теоретической подготовкой по другим дисциплинам, входящим в цикл геотехнических наук, включающих инженерную геологию и механику грунтов.

Во время изучения дисциплины «Основания и фундаменты» студент должен освоить теоретический курс, выполнить курсовой проект, сдать экзамен по дисциплине.

Основной теоретический материал для студентов очной формы обучения излагается на лекциях, а около 20 % прорабатывается студентами самостоятельно. На практических занятиях теоретический материал закрепляется путем решения задач и выполнения контрольных работ.

В процессе курсового проектирования приобретаются навыки самостоятельного выполнения расчетов, конструирования фундаментов, проведения технико-экономических сопоставлений их вариантов.

Теоретический материал необходимо изучать в соответствии с действующей программой дисциплины «Основания и фундаменты».

Введение

Основные понятия и определения. Требования к основаниям и фундаментам. Роль отечественной и зарубежной науки и техники в развитии дисциплины. Современное состояние фундаментостроения и перспективы развития. Основные задачи изучения курса.

  1. Принципы проектирования оснований

И фундаментов

Предельные состояния оснований сооружений. Принципы проектирования. Основные типы сооружений по жесткости. Формы деформаций и смещений сооружений (осадки уплотнения, разуплотнения, выпирания, расструктуривания до и в период эксплуатации сооружений). Понижение чувствительности зданий к неравномерным осадкам. Взаимосвязь проектирования и возведения фундаментов.

Фундаменты на естественном основании

Выбор глубины заложения подошвы фундамента в зависимости от инженерно-геологических условий, климатических условий района строительства, конструктивных особенностей сооружения и других факторов.

Назначение фундаментов. Типы фундаментов. Материал для фундаментов. Конструкции сборных и монолитных фундаментов.

Гидроизоляция. Гидроизоляция подвальных помещений. Дренаж. Защита фундаментов от агрессивных вод.

Проектирование оснований и фундаментов. Расчеты оснований по деформациям и несущей способности. Порядок расчета оснований и фундаментов. Расчет центрально- и внецентренно-нагруженных жестких фундаментов. Расчет фундамента при действии горизонтальной нагрузки.

Гибкие фундаменты. Понятие о гибких фундаментах. Расчетные модели оснований. Область применения расчетных методов.

Свайные фундаменты

Типы свай и виды свайных фундаментов. Ростверки. Сваи, по-гружаемые в грунт в готовом виде. Сваи, изготавливаемые в грунте. Явления, происходящие в грунте при погружении свай и изготовлении набивных свай. Работа одиночной сваи и сваи в кусте.

Определение несущей способности свай-стоек и свай трения (висячих) расчетом по СНиП 2.02.03-85. Практические методы определения несущей способности свай (испытанием статической нагрузкой, динамический метод, статическим и динамическим зондированием).

Проектирование свайных фундаментов. Последовательность расчета центрально- и внецентренно-нагруженных свай фундаментов. Расчет свайных фундаментов при действии горизонтальных нагрузок. Расчет осадок свайных фундаментов.

К группе фундаментов на естественном основании относятся ленточные, столбчатые и плитные фундаменты. Глубина заложения таких конструкций определяется в первую очередь физико-механическими свойствами грунта и действующими на них нагрузками. Также влияют конструктивные особенности сооружения такие как: наличие или отсутствие подвала, высота расположения пола первого этажа относительно уровня земли и другие. Как правило, конструкция фундамента выполнена из железобетона. Она может быть монолитной, изготавливаемой непосредственно на строительной площадке из товарного бетона, или сборной, изготавливаемой из стандартных элементов, которые в свою очередь изготовлены на заводе железобетонных конструкций. Отличие составляют плитные фундаменты, которые изготавливаются только монолитными, за редким исключением.

Плитный фундамент

Плитные фундаменты (сплошная плита под всем зданием) у простого обывателя вызывают «уважение». Кажется, что они очень надежные и вместе с тем дорогостоящие из-за большого объема бетона. По поводу надежности и универсальности применения плитных фундаментов сказать ничего нельзя, это действительно так. Особенно если в доме предусмотрен подвал или цокольный этаж. А вот по поводу большого объема бетона и, соответственно, дороговизны – тут можно поспорить. В настоящее время разработаны целые системы опалубок, которые позволяют создавать пустоты в теле плиты. Пустоты в теле плиты, в так называемом «нейтральном» слое, ничуть не ухудшают прочностных и деформационных характеристик конструкции, а при этом позволяют «сэкономить» до сорока процентов объема бетона. Также разработаны системы опалубок, позволяющие создавать ребристые фундаментные плиты, ребра плиты направлены в низ. В таких плитах, по сравнению со сплошными конструкциями, возможно «сэкономить» шестьдесят и более процентов бетона. Правда, стоит отметить, такие конструкции не рассчитаны на большие нагрузки. Не из-за прочности самой ребристой плиты, а из-за того, что при такой конструкции и высоких нагрузках возрастают деформации грунта основания под плитой (осадка). Выше указанные конструкции являются «идеальными» для малоэтажного строительства, когда нет необходимости строить выше трех–четырех надземных этажей. Мало того,. что они вполне сопоставимы по объему бетона с ленточными фундаментами, они позволяют избежать попадание радона (инертный газ, выделяемый из грунта) в здание. Этим «не может похвастаться» ни один тип фундамента с полом подвала, устраиваемым по грунту. Разумеется, данное решение весьма высокотехнологичное и требует тщательной проработки проекта и, соответственно, грамотного исполнения. Некоторым «особо опытным» строителям оно придется не по вкусу.

Ленточный фундамент

Ленточные фундаменты выполняются, когда здание запроектировано с несущими стенами. Большинство малоэтажных построек и некоторые многоэтажные здания выполняются с несущими стенами. В высотном строительстве, как правило, несущим является каркас. Размеры ленточных фундаментов и глубина их заложения зависят от физико-механических свойств грунтов и действующих нагрузок. Для небольших объемов строительства или при отсутствии возможности использовать сборные железобетонные элементы, выполняются монолитные ленточные фундаменты. Они просты в исполнении, достаточно дешевы и не требуют особой квалификации от исполнителя. При большом объеме строительства и наличии возможности, ленточные фундаменты выполняются из сборных железобетонных элементов. Сроки изготовления таких фундаментов существенно меньше, чем в монолитном исполнении. Кроме того, их можно выполнять и при отрицательных температурах наружного воздуха, без специальных дополнительных мероприятий. В строительных нормах и правилах нет никаких ограничений по возможности применения ленточных фундаментов. Единственным ограничением может быть экономическая целесообразность. При «плохих» физико-механических свойствах грунта и больших нагрузках, ленточные фундаменты могут оказаться весьма дорогими. Для «специфических» грунтовых условий, а именно: просадочные свойства грунта, возможность морозного пучения, карстовые явления и так далее, необходима тщательная проработка проектных решений ленточных фундаментов. В целом, ленточные фундаменты «конкурентоспособны» при обычных грунтовых условиях и небольших нагрузках.

Столбчатый фундамент

В случае, когда сооружение выполнено в каркасной конструктивной системе и имеются «хорошие» грунтовые условия, применяются так называемые столбчатые фундаменты. Каркасная конструктивная схема (колонны и балки) применяется не только для высотных зданий. В каркасной конструктивной системе выполняют практически любые объекты при подтверждении экономической целесообразности. Столбчатый фундамент представляет собой плиту небольших размеров непосредственно под колонну каркаса. Столбчатые фундаменты также как и ленточные, могут выполняться либо монолитными, либо сборными. Критерием выбора также служит наличие возможности и объемы строительства. Пожалуй единственным недостатком столбчатых фундаментов является то, что их нельзя применять в «плохих» грунтовых условиях. Весьма эффективно применение столбчатых фундаментов на грунтах с искусственно измененными физико-механическими характеристиками. В данном случае они будут относиться к группе фундаментов на искусственном основании.

Естественные основания - это грунты или скальные породы, находящиеся в условиях их природного залегания и восприни­мающие нагрузку от фундаментов.

Выбор строительной площадки под здание или со­оружение определяется в первую очередь геологическими и ги­дрогеологическими условиями основания. При этом устанавли­вают характер напластований грунтов и толщину каждого слоя, их физико-механические свойства, уровень грунтовых вод, воз­можность размывов и т. п.

Грунты исследуют, при помощи бурения или шурфования. Бурение дает возможность взять пробу грунта с различной глубины. Образцы отбираются не реже чем через каждые 0,5 м по высоте. Это наиболее быстрый и простой способ геологичес­кой разведки основания.

Шурфование позволяет непосредственно осмотреть грунт в естественных условиях и испытать его на образцах значитель­ных размеров с ненарушенной структурой. Шурфы представ­ляют собой колодцы прямоугольного сечения, вырытые на раз­личную глубину.

Для получения геологического профиля определен­ного грунтового участка границы однородных, слоев, которые обнаружены в шурфах или скважинах, расположенных по одной оси, соединяют между собой. Несколько таких вертикальных разрезов дают представление о геологическом строении данного грунтового массива.

Расчет основания заключается в ограничении дефор­маций конструкций зданий, определяемых величиной нагрузки, которую называют расчетным сопротивлением осно­вания. Эта нагрузка должна соответствовать такой осадке ос­нования, при которой деформации, возникающие в конструкциях здания или сооружения, не превышают допустимых для их нор­мальной эксплуатации.

Осадка основания под фундаментом зависит от соотношения между нагрузкой на грунт и его деформацией, а, также от рас­пределения давления в грунте. Подошва фундамента, передавая нагрузку на основание, вызывает в нем соответствующие напря­жения. С возрастанием глубины эти напряжения распространя­ются на все большие объемы грунта, но величина их уменьшается. Если рассматривать горизонтальную плоскость, то на­пряжения в ней распределяются неравномерно. Их наибольшая величина наблюдается в центре приложения нагрузки с посте­пенным уменьшением к периферии (рис. 53).

Распределение давления зависит от формы фундамента в плане. Под ленточным фундаментом давление в грунте с глуби­ной будет уменьшаться значительно меньше, чем под квадрат­ным, где оно распространяется сразу равномерно в четыре сто­роны, а не в две, как под ленточным фундаментом. Например, на глубине 1 м величина среднего давления в грунте под ленточным фундаментом будет равна 0,55 р, а под квадратным фундаментом 0,34 р на глубине 2 и 3 м соответственно 0,31 р и 0,21 р, 0,11 р и 0,06 р (р - величина среднего давления в грунте под подошвой фундамента).

Расчетные сопротивления грунта при глубине заложения фундамента от 1,5 до 2 м и ширине фундамента 0,6-1 м уста­новлены следующие:
глинистые грунты - от 1 до 6 кг/см 2 (в зависимости от по­ристости и влажности);

Рис. 53 График давления в грунтах

Пески - от 1 до 4,5 кг/см 2 (в зависимости от крупности частиц, влажности и плотности);
- крупнообломочные грунты - от 3 до 6 кг/см 2 ;
- скальные породы – 1/6 от предела прочности скалы на сжа­тие (независимо от размеров и глубины заложения фунда­мента).

При глубине заложения фундамента менее 1,5 м расчетное сопротивление уменьшают, а при более 2 м - повышают, так как грунты с увеличением глубины заложения под влиянием веса вышележащих слоев становятся более плотными.

Кроме того, при ширине фундамента менее 0,6 м расчетное сопротивление грунта должно быть уменьшено, а при более 1 м - повышено.

Содержание статьи

ФУНДАМЕНТ, подземная или подводная часть сооружения, которая передает его грунтовому основанию статическую нагрузку, создаваемую весом сооружения, и дополнительные динамические нагрузки, создаваемые ветром либо движением воды, людей, оборудования или транспорта. Правильно спроектированный фундамент передает все нагрузки грунту таким образом, что исключается возможность недопустимой осадки и разрушения сооружения. Как правило, это достигается распределением нагрузки по достаточно большой площади, выемкой грунта до уровня крепких пород, залегающих на большей глубине, применением свай, погруженных в слой слабых пород до слоя более крепких, или укреплением поверхностного слоя слабого грунта. Если всю площадь опоры образует скальный грунт, то осадка будет ничтожно малой. Трудности возникают, когда сооружение требуется возвести на грунте с высокой сжимаемостью, особенно если она меняется.

Основные виды фундаментов: фундамент на естественном основании, плавучий сплошной фундамент и свайный фундамент с забивными и набивными сваями. Особое место занимают специальные подводные фундаменты.

Фундаменты на естественном основании.

Такие фундаменты бывают сплошные плитные (из железобетонных плит) и перекрестные (в виде решетки из железобетона, стали, а иногда из дерева). Площадь контакта фундамента с грунтом должна соответствовать нагрузке с учетом предполагаемого отпора грунта. Максимальный отпор (реактивное давление) грунта определяется экспериментально на основе принципов механики грунтов, и в государственных строительных нормах даются таблицы допускаемого отпора грунта для тех или иных географических зон. Фундамент должен быть правильно рассчитан на сопротивление изгибу и сдвигу. Подошва фундамента должна быть ниже максимальной глубины промерзания грунта, чтобы не сказывалось вспучивание грунта при замерзании. Безопасная глубина зависит от годовых колебаний температуры, от типа и диапазона вариаций местных грунтов и от нормального уровня подземных вод. Кроме того, иногда наблюдаются сезонные изменения объема глинистых грунтов, чего нельзя допускать под фундаментом, заложенным на естественном основании.

В очень холодных регионах, например арктических, грунт промерзает на большую глубину и оттаивает лишь в верхнем слое толщиной 0,5–3 м. В таких условиях «вечной мерзлоты» необходим особый подход к строительству фундамента на естественном основании. Обычно предусматривается теплоизоляция между верхней частью сооружения и подошвой его фундамента, предотвращающая таяние подпочвы с последующим вспучиванием грунтового основания при повторном замерзании.

Плавучий фундамент.

На глубоких пластах грунта с высокой сжимаемостью применяются расширенные сплошные фундаменты, которые поддерживают сооружение как бы «на плаву» в пластичном грунте. Если сплошной фундамент правильно спроектирован, то осадка и перекосы равномерно распределяются по всему сооружению и в верхней части сооружения не возникает серьезных деформаций.

Считается, что сплошной фундамент будет плавучим, если его масса с учетом всех нагрузок примерно равна массе вытесненного грунта (или воды); тогда достигается равновесие, и большая осадка не возникает. Это правило предъявляет несколько завышенные требования к глубине. Благодаря внутреннему трению грунт выдерживает более значительную нагрузку, нежели вес вынутого грунта, хотя и при несколько большей осадке. Для равномерного распределения нагрузки, передаваемой грунтовому основанию колоннами, применяются плиты и балки из преднапряженного бетона, перевернутые арки с бетонными плитами, распределительные фундаментные решетки, перевернутые арки с ребром и оболочки. Фундамент должен быть правильно рассчитан на сопротивление изгибу, сдвигу и нормальным силам.

Забивные сваи.

В случае слабых грунтов применяются фундаменты, в которых основными элементами, передающими нагрузки от сооружения основанию, являются сваи, погружаемые в грунт. Нагрузки передаются не только за счет опорного давления, но и за счет бокового трения об уплотненный грунт. Благодаря частичной разгрузке окружающим грунтом сваи свайного «куста» меньше нагружаются, чем отдельно стоящие сваи.

Забивные сваи могут быть деревянными, бетонными и стальными. Деревянная свая (шпала) представляет собой обработанное бревно диаметром около 30 см в головке (комле) и длиной 3–15 м. Бревна должны быть прямыми, ошкуренными, со срезанными под корень сучками. Для увеличения трения на боковых поверхностях деревянные сваи иногда снабжают деревянными или металлическими обручами. Бетонные сваи могут изготавливаться либо на месте, либо в заводских условиях. Сборные сваи должны быть обязательно хорошо армированы сталью, чтобы они не боялись погрузки-выгрузки и ударов при забивании. Стальная свая допускает наращивание до ~90 м и обычно представляет собой двутавровый профиль или трубу подходящей длины. Стальная обсадная труба диаметром 20–60 см после погружения в грунт, заполняется бетоном. Применяются рифленые с поверхности толстостенные стальные трубные сваи со стальным сердечником на конце для ослабления удара при вхождении в грунт. Такие сваи-оболочки тоже заполняются бетоном. Для повышения прочности в трубные сваи-оболочки обоих типов вставляют стальной двутавровый профиль. Иногда внутренний бетон выбивают наружу из нижнего конца сваи, создавая тем самым расширенную опору. Погружение свай в грунт осуществляют забивкой, вдавливанием, вибрированием и завинчиванием. Забивку свай производят с помощью копровых установок с паровоздушными и дизель-молотами. Процесс погружения сваи в песчаный и гравийный грунт значительно облегчается и ускоряется, если грунт под нижним концом сваи размывается сильной струей воды, для чего в теле сваи может быть оставлен канал или смонтирована труба для подачи воды (под давлением около 0,7 МПа).

Набивные сваи.

Набивные сваи применяются в тех случаях, когда сооружения повышенной тяжести приходится устанавливать на прочном грунте, покрытом сверху толстым слоем слабого. Для этого в слабом грунте бурят скважину до слоя скальной породы, ортштейна или гравия и заполняют ее бетоном. Для умеренно прочных грунтов пригоден т.н. чикагский способ: грунт вынимают последовательно секциями по 1,5 м, закрепляя каждую деревянной боковой опалубкой перед тем, как приступать к разработке грунта следующей секции. Построенная таким образом набивная свая передает нагрузки от опоры колонны непосредственно прочному грунту. Иногда ее для увеличения площади опоры расширяют на нижнем конце, если он не доходит до скальной породы. Часть нагрузки передается грунту за счет трения на боковых поверхностях сваи.

Кессонные набивные сваи изготавливают, забивая паровым копром в грунт широкий открытый с торцов стальной обсадной цилиндр. Затем из погруженного цилиндра вынимают грунт и заполняют освободившееся пространство бетоном, предварительно вставив внутрь для армирования, если это необходимо, двутавровый стальной профиль. Стальная обсадная труба, оставленная в скважине, повышает прочность сваи пропорционально площади своего поперечного сечения и модулю упругости.

Подводные фундаменты.

Для обеспечения безопасного пространства для рабочих и оборудования строительство подводного фундамента начинают с того, что строят шпунтовое ограждение или опускной колодец. Эти водозащитные приспособления позволяют удалить с места расположения будущего фундамента воду и грунт, расчистить его и выполнить необходимые работы с точностью, возможной на сухом грунте.

Шпунтовое ограждение.

Шпунтовые ограждения наиболее подходят при малых глубинах воды, хотя известны случаи, когда они применялись при глубине до 30 м. Такие ограждения строятся из деревянных или стальных шпунтовых свай, устанавливаемых в один или два ряда и скрепляемых так, чтобы они выдерживали напор воды. Межсвайный промежуток двухрядного ограждения заполняется уплотненным грунтом, что препятствует протеканию воды. Ячеистое шпунтовое ограждение делается из замкнутых цилиндрических стальных ячеек, заполненных грунтом. Вода откачивается из зоны ограждения насосами.

Опускной колодец.

Открытый опускной колодец представляет собой полую цилиндрическую оболочку, по размерам соответствующую фундаменту и внутри хорошо укрепленную поперечными стенками. Обычно опускной колодец применяется для устройства глубоких опор, передающих давление на нижние, более прочные слои грунта. Колодец опускают на дно, заполняют его внутренний ряж камнем, и сверху настраивают кессонную набивную сваю. Грунт вынимают через скважины: илистый – откачкой, а плотный – подъемником с многочелюстным грейферным землечерпальным ковшом. Погруженный колодец и кессонные сваи, образованные путем набивки бетоном грунтоподъемных скважин, служат фундаментом для устоя – опоры верхней части сооружения. Бетон для укладки на этом фундаменте подводится по металлическому бетоноводу диаметром не менее 20 см, опущенному сверху под воду. Бетоновод можно также опустить непосредственно на дно.

Кессоны.

Кессоны применяются на большой глубине, не позволяющей установить шпунтовое ограждение. Кессон представляет собой большую неглубокую стаканоподобную оболочку, которая в перевернутом виде опускается на дно водоема. Размеры кессона определяются площадью грунтового основания, соответствующей полной проектной нагрузке при заданном допускаемом отпоре донного грунта. Если кессон лежит на скальном грунте, то по диаметру он может лишь немного превышать опору закрепляемого на нем устоя или другого опорного элемента конструкции. Высота кессона определяется уровнем грунтового основания и уровнем высоких вод. Следовательно, предварительно необходимо получить данные об уровне и характере грунтового основания. Кессоны обычно изготавливают на суше, буксируют на понтонах на место закладки фундамента и крепят к кустовым сваям. Если глубина воды недостаточна для буксировки на плаву, то кессон можно собрать на сваях в нужном месте и потом опустить на дно.

Рабочая камера предусматривается по всей площади кессона; ее высота составляет около 2 м. К камере непрерывно подводится сжатый воздух под давлением, исключающим возможность натекания воды. Рабочие входят в камеру повышенного давления и выходят из нее через воздушный шлюз, который служит также для выгрузки вынутого грунта и снабжения строительными материалами. Грунт разрабатывается на дне и под острыми кромками стенок, так что кессон постепенно опускается под собственным весом и весом настраиваемого устоя. При этом давление в нем повышается соответственно наружному давлению. Когда кессон достигает прочного грунта, на котором он должен лежать, его рабочую камеру заполняют уплотненным бетоном, служащим фундаментом для устоя или другой опоры.

Кессон обычно громоздок и неудобен в управлении. Волны затрудняют его установку, а неравномерное боковое давление грунта мешает точно направлять его путем выемки грунта под острыми кромками стенок. В зависимости от прочности грунта и условий работы скорость погружения кессона в грунт может составлять от 3 см до 2,5 м в сутки. Максимальная известная глубина погружения кессона под воду составляет около 40 м. Избыточное давление на такой глубине (в 3,5 раза превышающее атмосферное) находится на пределе допустимого для человеческого организма.

Люди, длительное время работающие в условиях повышенного давления воздуха, подвержены двум специфическим заболеваниям. Одно, менее серьезное, по симптомам напоминает простуду («забитый нос») и может перейти в пневмонию. Другое – кессонная болезнь (воздушная эмболия) – нередко вызывает паралич с летальным исходом.

Опоры моста.

Опоры моста (устои и быки) – это элементы, промежуточные между фундаментом и верхней частью мостового сооружения. Однако их часто относят к фундаменту. Устои, которые обычно представляют собой бетонные стены, поддерживающие береговые концы моста и удерживающие грунтовое заполнение его въездной части, выполняются заодно со своим фундаментом и передают нагрузку непосредственно грунтовому основанию. Быки же, подобно колоннам, опираются на свои фундаменты и поддерживают верхнюю часть сооружения. Фундаменты мостовых опор могут быть на естественном основании, свайными или кессонными и проектируются так, чтобы они выдерживали все нагрузки и защищали конструкцию от вымывания грунта водным потоком.

Временные фундаменты.

Когда требуется заменить или укрепить фундамент, его заменяют или усиливают по частям, применяя при необходимости боковые подпорки и подпорные балки.

Замена по частям.

На коротких участках через определенные интервалы вынимают грунт под старыми фундаментами до нового грунтового основания. В образовавшихся котлованах строят участки новой стены с соответствующими фундаментами и соединяют их с нижней частью старой стены. Когда эти участки стены завершены, они поддерживают старую стену до завершения разработки грунта на оставшихся промежуточных участках и сооружения новых пристроек стены.

В другом варианте усиления фундамента в грунт под стеной с некоторыми интервалами забивают металлические трубы. Когда трубы доходят до нового грунтового основания, их очищают изнутри от грунта и заполняют бетоном вплоть до нижнего обреза стены. Эти трубные сваи поддерживают стену во время сооружения пристроек стены и новых фундаментов.